
PROBLEM SET 10: FINAL REVIEW

CS 198-087: INTRODUCTION TO MATHEMATICAL THINKING
UC BERKELEY EECS

FALL 2018

This homework will not be collected. Instead, we intend it to be practice for the upcoming final.
This homework is not comprehensive; we highly encourage you to review material from before
the midterm.

1. Prove that gcd(a, b) · lcm(a, b) = a · b.

Solution:

gcd(a, b) · lcm(a, b) = (p
min(a1,b1)
1 · pmin(a2,b2)

2 · ... · pmin(ak,bk)
k ) · (pmax(a1,b1)

1 · pmax(a2,b2)
2 · ... · pmax(ak,bk)

k )

= p
max(a1,b1)+min(a1,b1)
1 · pmax(a2,b2)+min(a2,b2)

2 · ... · pmax(ak,bk)+min(ak,bk)
k

= pa1+b1
1 · pa2+b2

2 · ... · pak+bk
k

= (pa11 · p
a2
2 · ... · p

ak
k ) · (pb11 · p

b2
2 · ... · p

bk
k )

= ab

2. Determine the following inverses.

a. 13−1 mod 33

b. 15−1 mod 24

c. 19−1 mod 90

Solution:

a. The calls we’d make to the Euclidean algorithm are (33, 13), (13, 7), (7, 6) and (6, 1).
We can then write the following relationships using the division algorithm:

33 = 2 · 13 + 7

13 = 1 · 7 + 6

7 = 1 · 6 + 1
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Rearranging for the remainders, we have

7 = 33− 2 · 13
6 = 13− 1 · 7
1 = 7− 1 · 6

Substituting, we have

1 = 7− 1 · 6
= 7− 1 · (13− 1 · 7) = 2 · 7− 13

= 2 · (33− 2 · 13)− 13

= 2 · 33− 5 · 13

Therefore, −5, or 28 (since −5 + 33 = 28) is the inverse of 13 in mod 33.

b. This inverse does not exist, as gcd(15, 24) = 3 6= 1.

c. The process is identical to that in part a, and so the steps are not reproduced below.
However, you should ensure that you get the result 19 . To verify, 19 · 19 = 361 =
90 · 4 + 1.

3. Use the modular exponentiation techniques we’ve seen in previous homeworks (FLT, ex-
tended FLT, repeated squaring) to evaluate the following quantities.

a. 1812 mod 26

b. 9122 mod 143

c. 867 mod 15

d. 1035 mod 17

Solution: We will heavily use the fact that a(p−1)(q−1) ≡ 1mod (p− 1)(q− 1) for relatively
prime p, q. We’ve referred to this as ”extended FLT.”

a. We know 26 = 2 · 13, both of which are prime. Thus, a(2−1)(13−1) ≡ a12 ≡ 1 mod 26.
Therefore, 1812 ≡ 1 mod 26.

b. Again, we can factor 143 as 11 · 13. (11 − 1) · (13 − 1) = 120, telling us that a120 ≡
1 mod 120. Then, 9122 ≡ 9120 · 92 ≡ 92 ≡ 81 mod 120.

c. Note: parts c and d are very similar. We will do part c using repeated squaring, and
d using Fermat’s Little Theorem.

We can write 67 as the sum of powers of two, as 67 = 64 + 2 + 1. Once we find
expressions for 8, 82 and 864, we can multiply them together to find our result (in
mod 15, of course).
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81 ≡ 8

82 ≡ 64 ≡ 4

84 ≡ 42 ≡ 16 ≡ 1

816 ≡ (84)4 ≡ 14 ≡ 1

Then, 867 ≡ 864 · 82 · 81 ≡ 1 · 4 · 8 ≡ 32 ≡ 2 (mod 15).

d. Using Fermat’s Little Theorem, we have that a16 ≡ 1(mod 17). Thus, 1016 ≡ 1. Then,

1035 ≡ 1032 · 103

≡ (1016)2 · 103 ≡ 103

≡ 102 · 10 ≡ (−2) · 10
≡ −20 ≡ 14 (mod 17)

4. Determine the following quantities.

a. The number of subsets of {1, 2, 3, 4, ..., 50} that are not subsets of {1, 2, 3, 4, ..., 10} or
{2, 4, 6, 8, ...48, 50}

b. The number of multiples of 5, 7 or 12 that are less than or equal to 53 · 73 · 123

c. The number of factors of 1400 that are not multiples of 22 · 7

Solution:

a. Let U = {1, 2, 3, 4, ..., 50}, A = {1, 2, 3, 4, ..., 10} and B = {2, 4, 6, 8, ..., 48, 50}.

We will proceed by finding the number of subsets of either A or B. Recall, the power
set of S is the set of all subsets of S.

|P (A) = 210|

|P (B) = 225|

The intersection of the two sets is A ∩ B = {2, 4, 6, 8, 10}, and |P (A ∩ B)| = 25.
Therefore, the number of subsets of A or B is 210 + 225 − 25, and so the number of
subsets of U that are not subsets of A or B is 250 − 210 − 225 + 25 .

b. Let Mi represent the set of multiples of i less than 53 · 73 · 123.

As a smaller example, consider 5 · 12. There are 12 multiples of 5 less than 60: 5 ·
1, 5 · 2, ...5 · 12. We can generalize this to say there are 53·73·123

i multiples of i less than
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53 · 73 · 123.

|M5 ∪M7 ∪M12 = |M5|+ |M7|+ |M12| − |M5 ∩M7| − |M5 ∩M12| − |M7 ∩M12|+ |M5 ∩M7 ∩M12|

= 5273123 + 5372123 + 5373122 − 5272123 − 5273122 − 5372122 + 5272122

c. We know that (# factors of 1400, not multiples of 22 · 7) is equal to (# factors of 1400)
minus (# factors of 1400, multiples of 22 · 7).

1400 prime factors as 23 ·52 ·7, meaning it has 4 ·3 ·2 = 24 factors. To find the number
of factors that are multiples of 22 · 7, our number of options for each exponent now
decrease. Now, there are only 2 options for the exponent on 2 (2 or 3), still 3 for the
exponent on 5 (0, 1, or 2) and 1 for the exponent on 7 (must be 1). This gives us
2 · 3 = 6 factors of 1400 that are multiples of 22 · 7. Then, the number of factors that
are not multiples of 22 · 7 are 24− 6 = 18 .

5. Suppose I have 100 $1 dollar bills that I want to distribute between three of my friends, LeBron,
Lonzo and Lance.

How many ways can this be done...

a. In general, with no restrictions (other than that everyone receives some non-negative
integer amount)?

b. If everyone receives at least $1?

c. If everyone receives at least $t, for 0 ≤ x ≤ 33?

d. Such that LeBron and Lonzo receive the same amount? (Hint: How can we format this as
solving the number of solutions to x+ y = 50?)

e. Such that any two of them receive the same amount?

f. Such that LeBron receives at least $t, and Lance receives at most $y?

Solution: We will model each question as finding the number of non-negative integer
solutions to x1 + x2 + x3 = 100, with different sets of constraints in each. Let x1 represent
LeBron, x2 Lonzo and x3 Lance.

a. Here, our only constraints are x1, x2, x3 ≥ 0. This is given by the standard stars-and-

bars solution of
(
100+2

2

)
=

(
102

2

)
, since we have 100 stars and 2 bars.

b. Defining x′i = xi−1 gives us x′1+x′2+x′3 = 97, which has
(
97+2
2

)
=

(
99

2

)
solutions.
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c. Now, we define x′i = xi − t, for 0 ≤ x ≤ 33. Then:

x1 + x2 + x3 = 100

(x1 − t) + (x2 − t) + (x3 − t) = 100− 3t

x′1 + x′2 + x′3 = 100− 3t

which has
(
100− 3x+ 2

2

)
solutions.

d. Now, we set x1 = x2, meaning we are looking at 2x1+x3 = 100. Since 2x1 is an even
number, and 100 is even, we know that x3 must also be even. So, we set x3 = 2k,
for some integer k, where 0 ≤ k ≤ 50. We are now looking at the number of non-
negative integer solutions to x1 + k = 50, which can be modelled using 50 stars and
1 bar. This has

(
50+1
1

)
= 51 solutions.

e. Now, we consider three cases, x1 = x2, x1 = x3 and x2 = x3. Note, we don’t need to
consider any overlap, because it’s impossible for x1 = x2 = x3, as 3x1 = 100 has no
integer solutions!

Then, our answer is just three times the answer in the previous part, meaning this
situation has 3 · 51 = 153 solutions.

f. First, we deal with the constraint that x1 ≤ t. By defining x′1 = x1 − t, we are now
looking at the number of solutions to x′1+x2+x3 = 100− t, where each variable can
be a non-negative integer.

Now, looking at the constraint x3 ≤ y, we can break this up into y+1 separate cases:
either x3 = 0, or x3 = 1, or x3 = 2, ...., or x3 = y.

When x3 = 0, we are now looking at the number of solutions to x′1 + x2 = 100 − t,
which is

(
100−t+1

1

)
. If x3 = 1, this quantity is now

(
100−t−1+1

1

)
. In general, if x3 = i,

we are finding the number of solutions to x′1 + x2 = 100 − t − i, which is given by(
100−t−i+1

1

)
. We now need to sum from i = 0 to i = y, as these represent all the

possible values of x3.

Also, notice that
(
x
1

)
= x.

y∑
i=0

(
100− t− i+ 1

1

)
=

y∑
i=0

(100− t− i+ 1)

=

y∑
i=0

(101− t)−
y∑

i=0

i

= (101− t)(y + 1)− y(y + 1)

2
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6. Triangular numbers are numbers in the set {1, 3, 6, 10, 15, 21, ...}. The n-th triangular number,
for n ≥ 1, is given by

(
n+1
2

)
.

a. Determine a closed form expression for

1 + 3 + 6 + 10 + ...+

(
n+ 1

2

)
=

n+1∑
k=2

(
k

2

)

using the fact that
∑n

i=1 i = n(n+1)
2 and

∑n
i=1 i

2 = n(n+1)(2n+1)
6 . It should be a cubic

polynomial in n.

b. Prove your closed form expression holds using induction.

Solution:

a.

n+1∑
k=2

(
k

2

)
=

n+1∑
k=2

k(k − 1)

2

=
1

2

(
n+1∑
k=2

k2 −
n+1∑
k=2

k

)

=
1

2

((
n+1∑
k=1

k2 − 12

)
−

(
n+1∑
k=1

k − 1

))

=
1

2

(
(n+ 1)(n+ 2)(2n+ 3)

6
− 1− (n+ 1)(n+ 2)

2
+ 1

)
=

1

2

(
2n(n+ 1)(n+ 2)

6

)
=

n(n+ 1)(n+ 2)

6

b. Base Case: n = 1

1 = 1(2)(3)
6 , therefore the base case holds.

Induction Hypothesis: Assume n = j holds

Assume
∑j+1

k=2

(
k
2

)
= j(j+1)(j+2)

6 for some arbitrary integer j.

Induction Step: Prove n = j + 1 holds
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j+2∑
k=2

(
k

2

)
=

j+1∑
k=2

(
k

2

)
+

(
j + 2

2

)
=

j(j + 1)(j + 2)

6
+

3(j + 2)(j + 1)

2 · 3

=
(j + 1)(j + 2)(j + 3)

6

Therefore, by induction, this expression holds.

7. a. Let f(x) = 5x3 − 4x2 + 16x− 3 have roots r1, r2, r3. Find r21r2r3 + r1r
2
2r3 + r1r2r

2
3.

b. Find all values of m such that 2x2 −mx− 8 has roots that differ by m− 1.

c. Suppose a and b satisfy x2−mx+2 = 0. Also, suppose a+ 1
b and b+ 1

a satisfy x2−px+q = 0.
Determine q in terms of a, b, p,m.

Solution:

a. We can factor r21r2r3 + r1r
2
2r3 + r1r2r

2
3 as r1r2r3(r1 + r2 + r3). Then, from Vieta’s, we

know that r1 + r2 + r3 = −−45 = 4
5 and r1r2r3 = −−35 = 3

5 . Then, the quantity we’re

looking for is
12

25
.

b. Suppose r1, r2 are the roots of this equation, and let’s assume r1 ≥ r2 (we could
equivalently say r1 ≥ r2 but it doesn’t really matter).

Then, since we have the equation 2x2 −mx− 8, we know that r1 + r2 = −−m2 = m
2 ,

r1r2 = −4, and we want r1− r2 = m− 1. Solving using the first and third equations,
we can find the following expressions for r1, r2 in terms of m:

r1 =
3

4
m− 1

r2 =
1

2
m− r1 = −

1

4
m+

1

2

Then, since we have that r1r2 = −4, we can multiply our expressions for r1, r2 and
solve for m.
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r1r2 = −4(
3

4
m− 1

)(
−1

4
m+

1

2

)
= −4

(3m− 2)(m− 2) = 64

3m2 − 8m− 60 = (m− 6)(3m+ 10) = 0

This tells us that the possible values for m are 6,−10

3
.

c. Since a, b are roots of x2 −mx+ 2, we know that a+ b = m and ab = 2.

Since a + 1
b and b + 1

a are roots of x2 − px + q, we know that a + 1
b + b + 1

a = p and(
a+ 1

b

) (
b+ 1

a

)
= q.

Expanding out the expression for q:

q =

(
a+

1

b

)(
b+

1

a

)
ab+ 1 + 1 +

1

ab

Since we know that ab = 2, we can actually determine a numerical value for q:

q = 2 + 1 + 1 +
1

2
=

9

2

8. In each of the following expansions, find the coefficient of x13.

a. (x3 − 1
x)

7

b. (x5 − 1)6(2x2 + 3x)3

Solution:

a. First, we find the general term:

tk =

(
7

k

)
x3(7−k)(−x−1)k

= (−1)k
(
7

k

)
x21−4k

Setting 21− 4k = 13 gives us k = 2. Then,
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t2 = (−1)2
(
7

2

)
x21−8 =

(
7

2

)
x13 = 21 x13

b. We find the general terms of both separate polynomials first. We can use the variable
i for (x5 − 1)6 and j for (2x2 + 3x)3.

ti =

(
6

i

)
(x5)6−i(−1)i

= (−1)i
(
6

i

)
x30−5i

tj =

(
3

j

)
(2x2)3−j(3x)j

=

(
3

j

)
23−j3jx6−j

Multiplying the two general terms together yields

ti,j = (−1)i
(
6

i

)(
3

j

)
23−j3jx36−5i−j

Now, we set the exponent 36−5i−j equal to 13, which simplifies to 5i+j = 13, where
0 ≤ i ≤ 6 and 0 ≤ j ≤ 3. Plugging in j = 0, j = 1, j = 2 yields non-integer solutions
for i, which do not make sense in this case (as i, j represent indices). Plugging in
j = 3 yields i = 4. Then,

ti=4,j=3 = (−1)4
(
6

4

)(
3

3

)
23−333x36−5·4−3 = 15 · 27x13 = 405 x13

9. Let’s compare decimal approximations using both the Binomial Theorem and a Taylor Series
approximation. Suppose we want to estimate

√
37.

a. Approximate
√
37 by finding the first three terms of the Taylor Series approximation of

f(x) centered around a = 36, letting x = 1.

b. Approximate
√
37 by expanding the first three terms of the binomial expansion of (36 +

1)1/2.

c. What do you notice?

Solution:

a. If f(x) = x1/2, then f ′(x) = 1
2x
− 1

2 and f ′′(x) = −1
4x
− 3

2 .
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Then,

f(36 + x) = f(36) + xf ′(36) +
x2f ′′(36)

2!

f(37) = f(36) + f ′(36) +
f ′′(36)

2!

= 6 +
1

2
· 1
6
− 1

8 · 216
= 6.08275

b. Recall,
(
n
1

)
= n and

(
n
2

)
= n(n−1)

2 .

(36 + 1)n = 36n + n · 36n−1 + n(n− 1)

2
36n−2

(36 + 1)
1
2 = 36

1
2 +

1

2
· 36−

1
2 +

(12)(−
1
2)

2
36−

3
2

= 6 +
1

2
· 1
6
− 1

8 · 216
= 6.08275

c. In this case, they both happened to be be the same!

10. Determine the polynomial that interpolates S = {(1, 4), (2, 6), (5, 3)} under

a. mod 7

b. mod 11

Solution:

a. First, we make sub-polynomials p1(x), p2(x) and p3(x).

Recall, we are trying to find this polynomial modulo 7. We will make simplifications
in modulo 7 as we go in order to make the manual arithmetic easier. Some of these
simplifying steps are rather arbitrary, and could be saved until the end. Here, x1 = 1,
x2 = 2 and x3 = 5.

10



p1(x) =
(x− 2)(x− 5)

(1− 2)(1− 5)
=

x2 − 7x+ 10

4

≡ x2 + 3

4
≡ (4)−1(x2 + 3)

≡ 2(x2 + 3)

In the above, we used the fact that −7x ≡ 0 mod 7.

p2(x) =
(x− 1)(x− 5)

(2− 1)(2− 5)
=

x2 − 6x+ 5

−3

≡ x2 + x− 2

4
≡ 2(x2 + x− 2)

p3(x) =
(x− 1)(x− 2)

(5− 1)(5− 2)
=

x2 − 3x+ 2

12

≡ x2 − 3x+ 2

5
≡ 3(x2 − 3x+ 2)

Then, we have

p(x) = y1p1(x) + y2p2(x) + y3p3(x)

= 4 · 2(x2 + 3) + 6 · 2(x2 + x− 2) + 3 · 3(x2 − 3x+ 2)

≡ x2 + 3− 2(x2 + x− 2) + 2(x2 − 3x+ 2)

≡ x2 + 3− 2x2 − 2x+ 4 + 2x2 − 6x+ 4

≡ x2 − 8x+ 11

≡ x2 − x+ 4 (mod 7)

As a sanity check, we can verify that if p(x) = x2− x+4, then p(1) ≡ 4, p(2) ≡ 6 and
p(5) ≡ 3, all in mod 7.

b. We will follow the same process, but instead make simplifications in modulo 11.
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p1(x) =
(x− 2)(x− 5)

(1− 2)(1− 5)
=

x2 − 7x+ 10

4

≡ 3(x2 + 4x− 1)

p2(x) =
(x− 1)(x− 5)

(2− 1)(2− 5)
=

x2 − 6x+ 5

−3
≡ 7(x2 − 6x+ 5)

p3(x) =
(x− 1)(x− 2)

(5− 1)(5− 2)
=

x2 − 3x+ 2

12

≡ x2 − 3x+ 2

Then,

p(x) = y1p1(x) + y2p2(x) + y3p3(x)

= 4 · 3(x2 + 4x− 1) + 6 · 7(x2 − 6x+ 5) + 3(x2 − 3x+ 2)

≡ x2 + 4x− 1− 2x2 + 12x− 10 + 3x2 − 9x+ 6

≡ 2x2 + 7x− 5 (mod 11)

Again, we can verify that if p(x) = 2x2+7x−5, then p(1) ≡ 4, p(2) ≡ 6 and p(5) ≡ 3,
all in mod 11.
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