
PROBLEM SET 5: MIDTERM REVIEW

CS 198-087: INTRODUCTION TO MATHEMATICAL THINKING
UC BERKELEY EECS

FALL 2018

This homework will not be graded. However, it’s a good idea to do as many of these problems as
you can, as they will all help you in preparing for our upcoming midterm.

1. Determine the truth value of each of the following statements.

a. If 3 is odd, then 4 = 2 + 2.

b. If 3 is odd, then 4 = 2 + 3.

c. If 3 is even, then 4 = 2 + 2.

d. If 3 is even, then 4 = 2 + 3.

For the next few problems, assume P is true, Q is false and R is true.

e. (P ∨Q) ∧R

f. ¬Q ∨ P

g. (¬P ) ∧ (¬Q) ∧R

h. P ⇐⇒ Q

i. (P =⇒ Q) =⇒ ¬R

j. P ⊕Q⊕R

k. (P =⇒ Q)⊕ (¬R)

Solution:

a. True

b. False

c. True (3 is not even, therefore this implication is always true)

d. True (for the same reason as above)

e. True

f. True
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g. False

h. False

i. True (P =⇒ Q is false, therefore the second implication is true, regardless of the
value of ¬R)

j. False (P ⊕Q is true, and ”true⊕ true” is false. This holds even if you look at (Q⊕R)
first; an exclusive-or of mulitple statements is true only when an odd number of
them are true.)

k. False (”false⊕ false” is false)

2. Use truth tables to prove or disprove each of the following logical equivalences. (Hint: Recall,
logically, ”iff” (⇐⇒ ) and ”equivalent” (≡) mean the same thing.

a. P =⇒ Q ≡ ¬Q ∨ P

b. (P ⊕Q) ≡ (P ∨Q) ∧ ¬(P ∧Q)

c. P =⇒ Q ≡ ¬Q =⇒ P

d. (P ∨Q) ∧R ≡ P ∨ (Q ∧R)

e. ¬(P ∨Q) ≡ (¬P ) ∧ (¬Q)

f. (P ∨ (P ∧Q)) ⇐⇒ P (what does this mean?)

g. (P ∧ (P ∨Q)) ⇐⇒ P

h. P =⇒ ¬(¬Q ∧ ¬P ) ≡ TRUE

3. In each case, determine the value of the provided statement. The universe U is Z.

a. P (17), where P (x) = x ≤ 20

b. P (5), where P (x) = (x > 20) ∨ (x = 5k, k ∈ Z)

c. ∀x ((x ≥ 5) ∨ (x < 5))

d. ∃x ((x ≥ 5) ∨ (x < 5))

e. ∀x, y
(
x2 = y2 ⇐⇒ x = y

)
f. ∃x∃y

(
x2 = y2 ⇐⇒ x = y

)
g. ¬∃x

(
x2 = 0

)
h. ∀x∀y (xy ≥ x+ y)

i. ∀x∃y(y > x)

j. ∀y¬(∃x(y > x))

k. ∃x∀y(y > x)
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Solution:

a. True

b. True

c. True

d. True

e. False ((−3)2 = 32, but −3 6= 3)

f. True (let x = y = 0)

g. False (there does exist such an x, namely x = 0)

h. False (let x = 1, y = −1)

i. True (this says that there is no largest integer)

j. False (with De Morgan’s laws, we can rewrite this to be ∀y∀x(y ≤ x); for example, if
x = 1 and y = 2, y ≤ x is not true, but it claims to be true for all x and y)

k. False (if such an x existed, it would be the smallest integer, but the integers have no
largest or smallest element)

4. Use De Morgan’s Laws to rewrite each of the following statements.

a. ¬(∃xP (x))

b. ¬(∀x∃yP (x, y))

c. ¬(P =⇒ Q)

d. ¬(¬Q ∨ ¬P )

e. ¬(P ⊕ ¬Q) (Hint: Re-write P ⊕ ¬Q, using an identity we saw in lecture and elsewhere on this
homework.)

f. ¬(∀x∃y(P (x) ∨Q(y)))

g. ¬((∀xP (x)) ∨ (∃yQ(y)))

Solution:

a. ∀x¬P (x)

b. ∃x∀y¬P (x, y)

c. P ∧ ¬Q

d. Q ∧ P

e. (¬P ∧ ¬Q) ∨ (¬P ∨ ¬Q) (to see this, write P ⊕Q as (P ∨Q) ∧ ¬(P ∧Q))
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f. ∃x∀y(¬P (x) ∧ ¬Q(y))

g. (∃x¬P (x)) ∧ (∀y¬Q(y))

5. Suppose A = {j2 : j ≤ 5}, B = {t : t is prime}, C = {s : s ≥ 19}, and the universe is
U = {t : t ∈ N0, t ≤ 25}.

Determine each of the following.

a. A ∪B

b. AC ∪ CC

c. |(A ∪B) ∩B|

d. |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∪B ∪ C|

e. (A−B)− C

f. (A−B)C ∪ (B − C)C

6. Suppose A = {a, b, c}, B = {0, 1} and C = {2}.

a. Find A×B.

b. Find A×B × C.

c. Find B ×A.

d. Prove that if A×B = B×A, then A = B. (Hint: Remember, giving an example doesn’t suffice
as a proof. You need to show this rigorously.)

7. Determine whether each of the following functions is an injection, surjection, bijection, or
none.

a. f : Z→ Z, f(x) = x2 − 1

b. f : R≥0 → R, f(x) =
√
x

c. f : R≥0 → R≥0, f(x) =
√
x

d. f : R→ N, f(x) = 23

e. f : R→ Z, f(x) = dxe (Hint: Is it possible for any function on R→ Z to be a bijection?)

f. f : N→ Q, f(x) =

{
1
4x+ 3

2 x 6= 4k, k ∈ N
−1

4x− 1 x = 4k, k ∈ N

Solution:

a. None. f is not an injection, as f(−1) = f(1) = 0, but −1 6= 1. f is not a surjection, as
f(x) = 2 has no solution (as the inputs to f are only the integers).
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b. Injection only. f is an injection as square-rooting is unique. f is not a surjection be-
cause

√
x = −1 has no solution when the domain is the non-negative real numbers.

c. Bijection. Now, when we restrict the codomain to be only the non-negative real num-
bers, x 7→

√
x is a bijection.

d. None. f is not an injection, as all inputs map to the same output. f is not a surjection
as the range is simply {23}, which is not equal to the set of natural numbers.

e. Surjection only. f is not an injection, as d1.9e = d1.91e, but 1.9 6= 1.91. f is a surjection
because for any integer n, dne = n, therefore every integer has a pre-image (i.e. every
integer is mapped to).

f. Injection only. f is an injection, as no two inputs ever have the same output (write out
a few terms of this sequence to see why). f is not a surjection as the rational number
1 is never seen as an output (The only actual outputs are in the set {74 ,

9
4 ,

11
4 ,

13
4 , ...} ∪

{2,−2, 3,−3, 4,−4, ...}. This is similar to a homework problem, but there the domain
and codomain were two specific sets, not N and Z).

8. Suppose f(x) and g(x) are functions.

Prove that if f(g(x)) is one-to-one, then g(x) is one-to-one. (Hint: ”one-to-one” is another term
for ”injective”.)

Solution: While we can do this directly, here we’ll use a proof by contraposition. If we’re
doing a proof by contraposition, we must show that if g(x) is not one-to-one, then f(g(x))
is not one-to-one.

Suppose g(x) is not one-to-one.

We can do this by contradiction (remember the form P ∧¬Q). Let’s assume that f(g(x)) is
one-to-one and that g(x) is not.

If g(x) is not one-to-one, there must exist x1, x2 such that g(x1) = g(x2), but x1 6= x2. But,
since f(g(x)) is one-to-one, f(g(x1)) = f(g(x2)) =⇒ x1 = x2, contradicting what we just
assumed. Therefore, by contradiction, we’ve shown that if f(g(x)) is one-to-one, then g(x)
is one-to-one.

9. a. Prove there is no smallest positive rational number.

b. Prove there is no largest prime number. (Hint: All natural numbers can be written as the
product of primes.)

Solution:

a. Let’s proceed by contradiction. Assume there is some smallest positive rational
number r. Then, r′ = r

2 is also positive, and is strictly smaller than r. This means
that r is not the smallest positive rational number, which contradicts what we orig-
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inally assumed. Therefore, by contradiction, we’ve proved that there is no smallest
positive rational number.

b. Once again, let’s proceed by contradiction. Assume there is some largest prime num-
ber. This must mean that there are only finitely many prime numbers p1, p2, p3, ...pn
(since the smallest prime is p1 = 2), and that the largest prime is pn.

Then, let’s construct the number P = p1 ·p2 ·...·pn−1 ·pn+1. This P is not a multiple of
any of the primes p1, p2, ...pn. Since any natual number can be written as the product
of primes, and none of the primes p1, p2, ..., pn are a factor of P , this must mean that
P is prime. However, P is larger than pn, meaning that pn is not the largest prime
number, contradicting what we originally assumed.

Therefore, by contradiction, we’ve shown that there is no largest prime number.

10. A perfect number is a positive integer n such that the sum of the factors of n that are less than
n, is equal to n. For example, the factors of 6 (that are not equal to 6) are 1, 2, and 3, and 1 + 2
+ 3 = 6.

Prove that a prime number cannot be a perfect number.

Solution: Suppose there exists some prime number p that is a perfect number. 1 is only
one factor of p less than p. For p to be a perfect number, we would need that p = 1, but 1
is neither prime nor composite. This is a contradiction (since we assumed p was prime);
therefore, by contradiction, we’ve shown that a prime number cannot be a perfect number.

11. In base 10, the integer an−1an−2...a1a0 can be written as 10n−1an−1+10n−2an−2+ ...+102a2+
101a1 + 100a0. For example, 427 = 4 · 102 + 2 · 101 + 7 = 400 + 20 + 7.

Suppose n ∈ N.

a. Prove that n is divisible by 3 if and only if the sum of the digits of n is divisible by 3.

b. Prove that n is divisible by 9 if and only if the sum of the digits of n is divisible by 9.

(Remember, to prove the statement ”A if and only if B”, you must prove A =⇒ B and B =⇒ A.)

Solution: Done in lecture on Wednesday.

12. Prove that there is no integer n > 3 such that all of n, n+2, n+4 are prime. (Hint: Break n into
three cases – when it is divisible by 3, when it has a remainder of 1 when divided by 3, and when it has
a remainder of 2 when divided by 3.)

Solution:

Let’s break n into three cases: n = 3k, n = 3k + 1 and n = 3k + 2.
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Case 1: n = 3k

When n = 3k, 3k is clearly not prime, as it’s a multiple of 3. Therefore, when n = 3k, not
all of n, n+ 2, n+ 4 are prime.

Case 2: n = 3k + 1

When n = 3k + 1, n+ 2 = 3k + 1+ 2 = 3(k + 1), which is not prime as it’s a multiple of 3.
Therefore, when n = 3k + 1, not all of n, n+ 2, n+ 4 are prime.

Case 3: n = 3k + 2

When n = 3k + 2, n+ 4 = 3k + 2+ 4 = 3(k + 2), which is not prime as it’s a multiple of 3.
Therefore, when n = 3k + 2, not all of n, n+ 2, n+ 4 are prime.

We’ve shown that in all cases, either n, n + 2 or n + 4 is a multiple of 3. Therefore, in no
case are all of n, n+ 2 and n+ 4 prime, thus proving the original statement.

13. In any set of n numbers, there is at least one number that is less than or equal to the mean.

a. Write this statement using propositional logic.

b. Prove this statement.

Solution:

a. Suppose x1, x2, ...xn is some sequence of numbers. Then:

∀n ∈ N,∃ i : xi ≤
x1 + x2 + ...+ xn

n

b. Let’s do this as a proof by contradiction. Let’s assume that there does not exist a sin-
gle number that is less than or equal to the mean. This implies that each x1, x2, ..., xn
are greater than the mean.

x1 >
x1 + x2 + ...+ xn

n

x2 >
x1 + x2 + ...+ xn

n
...

xn >
x1 + x2 + ...+ xn

n

Adding the above equations:
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x1 + x2 + ...+ xn > n · x1 + x2 + ...+ xn
n

=⇒ x1 + x2 + ...+ xn > x1 + x2 + ...+ xn

This is a contradiction, as the quantity
∑n

i=1 xi cannot be greater than itself (no num-
ber can be greater than itself). Therefore, by contradiction, we’ve proven the original
statement.

14. Consider the series defined by t0 = 1, tn = 2tn−1 + 7,∀n ∈ N0. Use induction to prove that
tn ≤ 2n+3 − 7.

Solution:

Base Case: n = 0

t0 = 1, and 20+3 − 7 = 1 ≥ 0, therefore the base case holds.

Induction Hypothesis:

Assume that tk ≤ 2k+3 − 7 for some arbitrary integer k.

Induction Step:

tk+1 = 2tk + 7

≤ 2(2n+3 − 7) + 7

= 2n+4 − 14 + 7

= 2n+4 − 7

as required. Therefore, by induction, the statement tn ≤ 2n+3 − 7 holds.

15. The harmonic series Hn = 1 + 1
2 + 1

3 + ... + 1
n is known to be unbounded as n → ∞. In this

problem, we will use induction to prove that the harmonic series is unbounded.

Using induction, prove that ∀n ∈ N, H2n ≥ 1 + n
2 . Why does this prove that the harmonic

series is unbounded?

Solution: Base Case: n = 1

H21 = 1 + 1
2 ≥ 1 + 1

2 , as required, therefore the base case holds.

Induction Hypothesis: Assume that H2k ≥ 1 + k
2 for some arbitrary integer k.

Induction Step:
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H2k+1 = Hk +
1

2k + 1
+

1

2k + 2
+ ...+

1

2k+1 − 1
+

1

2k+1

≥ Hk +
1

2k+1
+

1

2k+1
+ ...+

1

2k+1
+

1

2k+1

= Hk +
2k

2k+1

≥ 1 +
k

2
+

1

2

= 1 +
k + 1

2

The inequality in the second line holds because each term 1
2k+1

, 1
2k+2

, ... 1
2k+1−1 ,

1
2k+1 is

greater than or equal to the term 1
2k+1 (since the denominators are increasing, the fractions

are decreasing, so 2k+1 is the largest denominator we have and thus 1
2n+1 is the smallest

number we have).

The equality in the third line comes from the fact that there are 2k terms of the form 1
2k+1 .

(Remember, 2k + 2k = 2(2k) = 2k+1).

Therefore, by induction, we have that H2n ≥ 1 + n
2 .

Since there is no largest integer, there is no largest value of 1 + n
2 . Since H2n ≥ 1 + n

2 , this
means that there is no largest value of H2n , meaning that the sum H2n (and also the sum
Hn) does not approach a finite value as n→∞.

16. In this problem, fi will refer to the Fibonnaci sequence. This sequence is defined by f1 =
1, f2 = 1, fn = fn−1 + fn−2, ∀n ≥ 2, n ∈ N.

For parts b and c of this problem, you will need to use strong induction. In regular mathe-
matical induction, in the induction hypothesis we assume that P (k) holds, for some arbitrary
value of k. In strong induction, instead of assuming just P (k), we assume P (0)∧P (1)∧...P (k−
1) ∧ P (k), i.e. that the proposition holds for all non-negative integers up to and including k.
This is useful if, in our induction step, we need to assume more than just P (k).

a. Prove that
∑n

i=1 f
2
i = fnfn+1.

b. Prove that fn > 2n, for n ≥ 8.

c. Prove that fn ≤ 2n.

Solution:

a. Base Case: n = 1
∑1

i=1 f
2
i = 12 = 1. Also, f1f2 = 1 · 1 = 1, therefore the base case

holds.

Induction Hypothesis: Assume that
∑k

i=1 f
2
i = fkfk+1 for some arbitrary value of k.
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Induction Step:

k+1∑
i=1

f2
i =

k∑
i=1

f2
i + f2

k+1

= fkfk+1 + f2
k+1

= fk+1(fk + fk+1)

= fk+1fk+2

Therefore, by induction, the statement holds.

b. This problem requires us to use strong induction, as in the induction step we will
expand fk+1 to fk + fk−1 and will need to use the hypothesis for both fk and fk−1.

Since our base case here is n = 8, we should look at f1, ..., f7. f1 = 1, f2 = 1, f3 =
2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, f8 = 21.

Base Case: n = 8

fn = 21 > 2 · 8, therefore the base case holds.

Induction Hypothesis: Assume fi > 2i for all integers i ∈ {1, 2, 3, 4, ...k}, for some
arbitrary integer k (this is where induction and strong induction differ).

Induction Step:

fk+1 = fk + fk−1

> 2k + 2(k − 1)

> 2k + 2

> 2(k + 1)

as required.

c. Base Case: n = 1

f1 = 1 ≤ 21 = 2, therefore the base case holds.

Induction Hypothesis: Assume that fi ≤ 2i for all integers 1 ≤ i ≤ k, for some
arbitrary integer k.

Induction Step:
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fk+1 = fk + fk−1

≤ 2k + 2k−1

≤ 2k + 2k

≤ 2(2k)

≤ 2k+1

as required. Therefore, by induction, the statement holds.

17. In this problem, we will prove that 3|n3 − n (i.e. that n3 − n is divisible by 3) for all n ∈ N0.

a. Prove this directly.

b. Prove this using induction.

Solution:

a. We can factor n3− n into n(n2− 1), and further into n(n− 1)(n+1). This represents
the product of three consecutive integers, and in any three consecutive integers, we
know that exactly one is a multiple of three (to see this, write out the sequence of
positive integers). Therefore, either n− 1, n or n+ 1 will have a factor of three in it,
and therefore n3 − 3 will be divisible by 3.

It is also possible to do this with casework, but that’s significantly more messy.

b. Base Case: n = 0: 3 does indeed divide 0, as we can find some integer j such that
0 = 3j (namely, j = 0).

Induction Hypothesis: Assume that 3|k3 − k for some arbitrary integer k.

Induction Step:

We now want to show that 3|(k+1)3− (k+1), i.e. that we can write (k+1)3− (k+1)
as 3 · (some integer).

We know that we can write k3 − k = 3j, for some integer j, from the induction
hypothesis. Then:

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= k3 − k + 3k2 + 3k

= 3j + 3(k2 + k)

= 3(j + k2 + k)

Therefore, by induction, the statement holds true.
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18. Recall, in lecture we showed that 1 + 2 + ...+ n = n(n+1)
2 as follows:

Sn = 1 + 2 + 3 + ...+ (n− 1)

Sn = (n− 1) + (n− 2) + ...+ 1

2Sn = n(n+ 1)

Sn =
n(n+ 1)

2

a. An arithmetic sequence with initial term a0 and common difference d is defined by an =

a0 + (n − 1)d for n ∈ N. Prove that
∑n

i=1 ai = n2a0+(n−1)d
2 , using (i) induction and (ii) a

direct proof similar to the one above.

b. A geometric series with initial term a and common ratio r is defined by an = arn−1 for
n ∈ N. Prove that

∑n
i=1 ai =

a0(rn−1)
r−1 using (i) induction and (ii) a direct proof similar to

the one above.

Solution:

a. (i) Induction

Base Case: n = 1

We know the first term a1 = a0 + (1− 1)d = a0. Also,
∑1

i=1 ai = 1 · 2a0+(1−1)d
2 = a0.

Therefore, the base case holds.

Induction Hypothesis: Assume that
∑k

i=1 ai = k 2a0+(k−1)d
2 .

Induction Step:

k+1∑
i=1

ai =
k∑

i=1

ai + ak+1

= k
2a0 + (k − 1)d

2
+ a0 + kd

=
2ka0 + k(k − 1)d

2
+

2(a0 + kd)

2

=
2ka0 + 2a0 + k2d− kd+ 2kd

2

= (k + 1)
2a0 + kd

2

as required. Therefore, by induction, the statement holds.

(ii) Direct Proof

We will proceed by writing Sn twice, once in the forward direction and once re-
versed. We will then notice that corresponding terms each sum to the same quantity,
2a0 + (n− 1)d). This is exactly what we did in lecture and above.

12



Sn = a0 + (a0 + d) + (a0 + 2d) + ...+ (a0 + (n− 2)d) + (a0 + (n− 1)d)

Sn = (a0 + (n− 1)d) + (a0 + (n− 2)d) + ...+ (a0 + 2d) + (a0 + d) + a0

2Sn = n · (2a0 + (n− 1)d)

Sn =
n · (2a0 + (n− 1)d)

2

as required.

b. (i) Induction

Base Case: n = 1 We know the first term is a1 = a0r
1−1 = a0. Also,

∑1
i=1 ai =

a0
r1−1
r−1 = a0. Therefore, the base case holds.

Induction Hypothesis: Assume that
∑k

i=1 ai =
a0(rk−1)

r−1 for some arbitrary integer k.

Induction Step:

k+1∑
i=1

ai =
k∑

i=1

ai + ak+1

=
a0(r

k − 1)

r − 1
+ a0r

k

= a0

(
rk − 1

r − 1
+

rk(r − 1)

r − 1

)
= a0

rk − 1 + rk+1 − rk

r − 1

=
a0(r

k+1 − 1)

r − 1

as required. Therefore, by induction, the statement holds.

(ii) Direct Proof

We will proceed by looking at the expansions of Sn and rSn, and subtracting.

Sn = a0 + a0r + a0r
2 + ...+ a0r

n−2 + a0r
n−1

rSn = a0r + a0r
2 + a0r

3 + ...+ a0r
n−1 + a0r

n

rSn − Sn = a0r
n − a0

(r − 1)Sn = a0(r
n − 1)

Sn =
a0(r

n − 1)

r − 1
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as required.

19. Prove that 0.9999999.... = 1.

Solution:

x = 0.99999...

10x = 9.99999...

=⇒ 9x = 9

=⇒ x = 1
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