
PROBLEM SET 6: NUMBER THEORY, MODULAR ARITHMETIC

CS 198-087: INTRODUCTION TO MATHEMATICAL THINKING
UC BERKELEY EECS

FALL 2018

This homework is due on Wednesday, October 24th, at 6:30PM, on Gradescope (note the later
deadline than usual). As usual, this homework is graded on participation, but it is in your best
interest to put full effort into it. This is a good opportunity to learn how to use LaTeX.

1. GCD and LCM mechanics (skip if you feel comfortable)

Determine the greatest common divisor and lowest common multiple for each pair of num-
bers.

a. 24, 36

b. 14, 15

c. 1200, 2350

d. 144, 768

e. 24, 152

2. GCD and LCM proof

Prove that lcm(a, b) = a · b if and only if gcd(a, b) = 1.

3. Order of Operations – Multiplication

In lecture, we showed that if a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

Prove that if a ≡ b (mod m) and c ≡ d (mod m), then a · c ≡ b · d (mod m).

4. Last Digit Trick

Consider the task of finding the last digit of 315. One could multiply out and determine 315

and read out the last digit, but there is an easier solution.

When multiplying 3 by itself, there is a pattern in the last digit. Observe:

31 = (3), 32 = (9), 33 = 2(7), 34 = 8(1), 35 = 24(3), 36 = 72(9), ...

We see that the last digits of the first four powers of 3 are 3, 9, 7 and 1. The fifth power of 3
ends in a 3, meaning the pattern will now repeat itself. The key realization is that the last digit
of 3n only depends on the last digit of 3n−1, and nothing else.
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We can generalize this pattern: If we let L(n) represent the last digit of n, we have:

L(3n) =


3, n ≡ 1 (mod 4)

9, n ≡ 2 (mod 4)

7, n ≡ 3 (mod 4)

1, n ≡ 0 (mod 4)

Similar patterns can also be found for all other digits. However, we don’t necessarily need to
consider powers of digits. We could also use the same properties when looking at powers of
23 — again, all we care about is the last digit. Looking at only the last digit of a number is
equivalent to considering all numbers mod 10.

It should also be noted that L(a + b) = L(L(a) + L(b)), for all natural numbers a, b (reason to
yourself why this is true).

a. Write a one-line Python function that takes in n and returns L(n) (this is just to check your
understanding; don’t use this function for the rest of the problems!).

b. Determine L(2323).

c. Determine L(77 + 87 + 97).

d. Show that when n is any odd positive integer, L(1n + 2n + 3n + ...+ 9n) = 5. (Hint: Look
at the last sentence of the above paragraph.)

5. Products of Relative Primes

Consider the following statement:

∀x, p, q ∈ N, x ≡ 0 (mod pq) =⇒ x ≡ 0 (mod p) ∧ x ≡ 0 (mod q)

a. Prove this statement.

b. Is the converse of this statement true in general?

c. For what p, q is the converse of this statement true? Prove your hypothesis using the
results from Problem 2.

6. Introduction to Fermat’s Little Theorem

Fermat’s Little Theorem (also known as FLT) states that for some prime p and any natural
number 0 < a < p:

ap−1 ≡ 1 mod p

We will save the proof of Fermat’s Little Theorem for future courses.

Use FLT to help you in solving the following problems.

a. Evaluate 56 (mod 7).
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b. Evaluate 256 (mod 7). How can we use Fermat’s Little Theorem here, even though we
had the condition that a < p?

c. Evaluate 523 + 623 + 723 (mod 23).

d. Why do we require a > 0 in our original statement?

e. Show that FLT can also be expressed as ap ≡ a mod p for any a ≥ 0.

f. Determine a−1 (mod p), where p is prime and a < p.

7. Exponentiation – Mechanical

Determine each of the following values. You may need to use Fermat’s Little Theorem, or
other techniques discussed in lecture.

a. 56 (mod 7)

b. 1418 (mod 15)

c. 1220 (mod 20)

d. 1763 (mod 22)

e. 961 (mod 11)

8. Extending Fermat’s Little Theorem

As we saw in the last problem, FLT says ap−1 ≡ 1 mod p for any prime p and 0 < a < p.

In this problem, we will use FLT to prove the following statement for any relatively prime
natural numbers p, q:

a(p−1)(q−1) ≡ 1 mod pq (1)

We will do so by instead proving the following statement:

a(p−1)(q−1) − 1 ≡ 0 mod pq (2)

This result is very important in proving why the RSA encryption algorithm works.

a. i. Show that a(p−1)(q−1) − 1 ≡ 0 mod p.

ii. Argue why a(p−1)(q−1) − 1 ≡ 0 mod q. (Hint: Think about symmetry.)

b. Use the result from the last part of Problem 5 to show that part (a) implies that equation
(2) is true.

c. Now, reason as to why equation (1) is true (this should only take a line).

d. Use this result to evaluate 537 (mod 26).
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9. Finding Inverses – Euclidean Algorithm

(You likely will not be able to complete later parts until we finish our discussion on the Ex-
tended Euclidean Algorithm on Monday.)

The task of finding the inverse of a in (mod m) is equivalent to finding integer solutions to
the equation

ax+my = 1

If we find an ordered pair (x, y) that satisfies this, then we’ve found x to be the inverse of a.
Often times this can be done by guessing and checking, but we need a more robust way to
find these coefficients x, y in general.

We’ve already discussed a method for finding the GCD of two numbers, but we now present
another way, called the Euclidean algorithm.

def gcd(a, b):
if b == 0:

return 1
else:

return (b, a % b)

In discussion, we will see how to extend the Euclidean algorithm such that it will also find us
our values of x, y that we need. For now, attempt to find each of the following quantities, or
state that they do not exist.

a. 5−1 (mod 24)

b. x : 5x ≡ 3 (mod 24)

c. (n− 1)−1 (mod n), where n ≥ 2 ∈ N

d. 5−1 (mod 23)

e. 12−1 (mod 42)

f. 24−1 (mod 47)
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