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Recap b= CO

« Divisibility: a|b 7
e Division Algorithm: a = dq—|—'r,whereO <r<d Vel ZO;I/ z, .- d- 3

e Fundamental Theorem of Arithmetic: every positive integer has a unique prime factorization

e Canonical Representations _ AU 22 A
= P? (FL - Pr\-
e GCD and LCM ~— —
(’hf(‘"&g
Important takeaway:

e Inthe division algorithm, if we set d = 4, for example, it tells us all integers can be written in the

formfl_q,élq—l— 1,49 + 2,0rdq + 3

—_—

Common misconceptions:

1. a|bc DOESNOT IMPLY a|bor alc (e.g.12|4 - 9, but 12 does not divide 4 or 9)
2.a|b™ DOESNOTIMPLY a|b (e.g. 12|62, but 12 does not divide 6)
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Example

Prove that if gcd(a, ¢) = ged(b, c) = l,th@ab, c);

Hint: Use the fact that we can always find integers x, y such that ax + by = ged(a, b).
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Motivating Examples for Modular Arithmetic

Odd and Even
0dd: remavde, 1 when div Lﬂq_ 2
eve © vemandes O b 2
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Formalization

We say /7 GZW

a = b (mod m)

MQM’I' / Com jrqut

/5 22 mod T

if and only if
7 [23-2

mla — b

a = b (mod m) reads "a is equivalent to b, modulo m." a and b are equivalent modulo mm if and

only | ave the same remainder when divided when m. We can also represent this as
b=a-+ km, Z..
— M;Z‘-)EL) = 009 wid §

U =24k
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When dealing with numbers modulo m, all integers can be reduted to one of
2
{0,1,2,...,m — 1}

This is the set of all possible remainders when dividing by m.

For example, consider the set of integers mod 3. All integers are equivalent to a number in the set
{0, 1, 2}. Forinstance, under modulo 3, we have that 33 = 0and 11 = 2.



Supposethata = r (mod m). We can add any integer multiple of ™ to a, and the equivalence
still holds, since the remainder when dividing by ™ doesn't change.

=5 =% =13 2828 mod §
=17

4=mg +r
Atm =m9g +r +i
arm =m(gH) + 1
AT

———————————

Therefore, the following are all equivalent to a in modulo m:
{....,.a —2m,a — m,a,a + m,a+ 2m,...}

For example, all elements in the following set are equivalent to 3 (mod 5), and can thus be
"reduced" to 3:

{..,—12,-7 -2 3 8,13,18,23,...}

Note:
—12 = 3 (mod 5)

egative integers also have equivalences in modular arithmetic, e.qg.

-3
5/-:1-; ISk
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Addition and Multiplication modylo S
Suppose we want to simplify 13 + 14 - 6 (mod 5). We could do the following:
13+14-6 =13+ 84 =97 = 2 (mod 5)
However, we could also simplify things first:
13+14-6=3+4-1="7(mod5) =2 (mod 5)
or even

13+14-6=—-2+4-1=2(mod5)

-2+CGD T2 =3 =2 2 (o 5)

Note, regardless of the order of simplification, the "standard form" result always remains the same.

10



In general, we have thatif a = b (mod m) and ¢ = d (mod m), then:

A.ddZ‘h\aw a—l—cElH—d(modm) l:’:a +(Mf£',

a-c=b-d(modm) d=c4+mKa

4

M wl"ﬁYl\\(ﬁL{w\M

bh+d = A+C +m (k/v’-l(z)
3 = A + m O
Proof of the first rule: A—ﬂufﬁﬁ\’\ S D=A
fa = b (mod m)andc = d (mod m), thenb = a + mk; andd = ¢ + mks. w od

b+d=a+ c+ mki +mks = (a+ c) +m(ks + ko)
= b+d=a+ c(modm)

Proof of the second rule: Exercise.
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Exponentiation A= (22>

Suppose we want to evaluate 21°(mod 9). We could find 2'° = 32768, and divide this number
by 9 and find the remainder, but there's a better way.

coe areir) s

We can use the fact that 2° = 8 = —1(mod 9):

— €
(2°)° = (~1)° = —1 = 8(mod 9)
Let's look at the following examples : =00 4:'
5”(mod26 (5 ) —(~\)-§E~§a£1w“0 =25 4

9 ~
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Exponentiation Technique: Repeated Squaring

Any integer can be written as the sum of powers of two (because any integer can be written in
binary).

Suppose we want to consider 429 (mod 13). We can write 26 = 16 + 8 + 2, implying that we
can write 420 as 410 . 48 . 42,

4' = 4 (mod 13)
4* = 16 = 3 (mod 13)
4® = (4°)* = 3* = 81 = 3 (mod 13)
4'° = (4°)? = 3 = 9 (mod 13)

Combining these results: 420 = 416 .48.42=9.3.3=27-3=1-3 = 3 (mod 13)
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Example

Determine 3°” (mod 53).
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Fermat's Little Theorem

Consider some prime p. Then, Fermat's Little Theorem states

A

a? = a (mod p)

Alternatively, if a is not a multiple of p, we can say 4{

aP— 1_1 modp 14 de(a P);j_

b
5 = :L_ mod %
26 d 3> L ol 2

gﬂlnuml T :‘,—_(Q’?>(S~Z>
= ¢g-§ = g4 620’:‘(3@



Modular arithmetic makes proofs that previously required induction or many cases relatively
simple.

n\
Example: Prove 11" — 6 is divisible by 5, Vn € N. > ) 1. é ) VL neld

Before: Done by induction. ﬂ n
Vb= wd S
Base Case:n = 1:11 — 6 = 5, which is clearly divisible by 5.

Induction Hypothesis: Assume 11% — 6 is divisible by 5, for some arbitrary k € N Equivalently, we
can say that 5e = 11% — 6, forsome ¢ € N.

Induction Step:
1171 —6=11"-11 -6 = (5c +6) - 11 — 6 = 5(11c + 12)
s 5[11F —6 =5 11" —6

Now:

"-{=0 = | ~d O
1‘4—651"—651—6 —5 =0 (mod 5) !
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Example

Prove that any odd square is of the form 8k + 1, where k is an integer.
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Cancellation Law

In standard arithmetic, the cancellation property refers to the fact that, for any real numbers

a,b,c,c#O, QC:bC

ac=bc=a=0»>

Does this hold in modular arithmetic?
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Division in Modular Arithmetic

In traditional, non-modular arithmetic, to solve the equation 3z = 14, we would multiply both sides
by the multiplicative inverse of 3, i.e. "divide by 3": N \
Id add - O

3r =14 ide“_; i_

371-8z=3".14 ‘
X=3"-1% <314
The multiplicative inverse of any non-zero real number x is defined such that

r-r =1

In regular arithmetic, we have A % However, with modular arithmetic, fractions no longer have

meaning (remember, when dealing with numbers mod m, the only numbers that exist are
{0,1,2,3,...,m — 1}... there are no fractions in this list). Now what?
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Modular Inverses

We say v is the modular inverse of  in mod m if
z-y =1 (modm)

This inverse may not necessarily exist, as we will see shortly.

For example: The inverse of 3 inmod 5 is 2, because:
3:2=6=1(mod?5)
However, the inverse of 10 in mod 12 doesn't exist, because there is no solution to

10z = 1 (mod 12)
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The problem of finding the inverse of a in mod m reduces to finding integers x, y that satisfy the
eqguation

ar +my =1

This equation states that the product ax is 1 away from some multiple of .
If we were to take "mod m" on both sides, we would end up with az = 1 (mod m).
Here, x represents the inverse of a.

e.g. Inverse of 3 in mod 5:
3r+ oy =1
3(2) +5(—1) =1= 3" =2 (mod 5)

How can we find o, y? For small numbers, Guess and Check. In general — extended Euclidean
algorithm.
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Inverse of 10 in mod 12:
10z + 12y =1

But, since 10 and 12 share factors:
bxr + 6 !
T = —
Y73

We want integer solutions for &, y. However, this equation implies that the sum of two integers is a

fraction! Not possible.

Takeaway: The inverse of a in mod m exists iff gcd(a, m) = 1.
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Goal: Find integer solutions to ax + my = 1.

Euclid's GCD Algorithm:

def gcd(a, b):
if b == 0:
return a
return gcd(b, a % b)

How can we use this to find =, y?
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