Announcements

e Homework 7 will come out later this week, and be due this Sunday

o [t will be very short (~3 problems), since you will have less than a week to work on it

o Mainly on concepts from today's lecture, which we will cover again on Thursday
o Will start consolidating grades

e Pass threshold will likely change

Now:

e Make sure to read the Binomial Theorem note on the website.



Binomial Theorem

Binomial: A polynomial with two terms, joined by addition.

Lo

(a+b)(c+d) =a(c+d)+blctd)=ac+ad+bc+bd

When multiplying two binomials, the result is every combination of one term in the first binomial
multiplied by one term in the second binomial.

(z+y)’ = (z+y)(z+y) =zz+ay+yz+yy=2"+ 22y +y°
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Now, we have ((2)) terms of the form 2, ( ) terms of the form £y and ( ) terms of the form y
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To generalize: Each term in the expansion of (z + y)" has k xsandn — kys,fork = 0,1, ...n.




Formalization of the Binomial Theorem

The binomial theorem states
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General Term

We define the k-th term in the expansion of a binomial as
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Example: What i m
: What is the general term of (335 L)7
- F) ?




Now: Applications and Properties of the Binomial Theorem



Example: Sum of Coefficients

What is the sum of the coefficients of 3:13 — 4:(} 125
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Example: Sum of the nth row of Pascal's Triangle

Previously, we proved that the sum of the n2th row of Pascal's Triangle is 2" using a combinatorial
argument. How can we do this using the Binomial Theorem?
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We know that (Z) is only defined for whole numbers 1, k, such that n > k. This is because n! is

only defined for whole n.
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However, we can rewrite ( k) to not use any factorials.
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Example: Proof of Freshman's Dream

The freshman's dream identity states
(z +y)’ =2’ + y” (mod p)

for a prime p. How can we use the Binomial Theorem to help us prove this?
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