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Announcements as%1gm

e Homework 8, the final homework for everyone, is now out
o Due Sunday at 11:59PM

o Final feedback form will be created by Thursday — please fill it out once it is ready!

e Quiz 5 aweek from today
o Will only be on topics since Quiz 4

Today and Thursday: Review and doing problems from earlier in the semester.

Next week:

e Tuesday: Quiz only, class will be done early

e Thursday: Wrap-up lecture. Will talk about course advice and look at a cool application of some
of the stuff we've seen.



Recap: Binomial Theorem

The binomial theorem states
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We define the k-th term, i.e. the general term, in the expansion of a binomial as

withk € {0,1,2,...,n}.



Recap: Vieta's Formulas

Degree-2 case: p(x) = asz? + a1z + ay
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Degree-3 case: p(z) = a3z’ + asx’ + a1z + ag
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Generalize?



Generalized Vieta's Formulas
p(x) = apz™ + ap_12" ... + asx® + a1 + ag

= an Z(—l)k (sum of the products of the roots of p(z), taken k at a time)z" "
k=0

Sum of roots:
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Overview 'HVl%): ,M*)B)P/HAB)

1. Sets, Functions, and Logic

e Sets N\

o Various set operations — union, intersection, difference, product

o Principle of Inclusion-Exclusio

o Definitions of w, R, C
= Relative cardinalities — countable vs. uncountable infinity

e Functions &' Co un ‘f‘k“{
D = (D

o Injections, surjections, bijections

o Domain, codomain, range

e Propositional Logic

o Basic operators—V, A, A D %
o Implications, and their variants (contraposition, converse) pou {W‘/" 1 B = 1 A
o Truth tables cony @ = A



2. Proof Techniques

e Direct Proofs
ID\/\)V‘& /4- = g

/—/7 ﬂB;P'TA
prove § fa Tererct abot N

e Proof by Contradiction

e Proof by Contraposition

Proof by Cases

Proof by Induction /\/7

o Strong induction

Also talked about series and sequences. W Sum )
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3. Number Theory
n=aqt’

e Prime factorization
e Fundamental Theorem of Arithmetic, Division Algorithm

e Modular Arithmetic
o Finding inverses



4. Counting

e Permutations and combinations - order matters vs. order doesn't matter
e Stars and bars counting
e Pascal's Triangle

e Combinatorial proofs

5. Combinatorics with Polynomials

e Binomial Theorem

e Vieta's Formulas
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Example: Consider the mapping from R to R givenby f :  — 5a3 — 22 + 3.1s f...

a) An injection?
b) A surjection?
c) A bijection?
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Example: Prove that there are no integer solutions to 2 — 3 = 4y.
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Example: Prove, using induction, that
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Example: The harmonic series H,, = 1 + % + % + .. T % Is known to be unbounded as

n — o0. ¢
1) Using induction, prove that Vn € N, Hy» > 1 + 3. 2
L) Why does this prove that H,, — oo asn — 00? /
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Example: Prove
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Example: Prove that if pisa prime, p > 5,thenp = 6k + 1l orp = 6k — 1forsome k € N,

using
a) A direct proof
b) A proof by contraposition M ouy 2 (onSecu 79\,(
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Example: Suppose 1 is an odd positive integer, and suppose we have ( (_) N =~ C A evEm

L(n) = the last digit of n

= N mod |0
Determine L(> ;2 , k™). L(V\)’
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