Announcements

e Homework 1 due tomorrow; Gradescope code is on website if you're not already added
e Quiz 1is a week from today!

o Would highly recommend looking at the textbook section for 1.3.
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In-lecture quiz from Tuesday

Suppose A and B are finite sets, and suppose that A is a proper subset
of B. Select all that apply:

84 responses

There exists a bijec 12 (14.3%)

here exists an injection
between A and...

ere exists an injection
between B and...
% exists a surjection

between A and...

70 (83.3%)

14 (16.7%)

20 (23.8%)

ere exists a surjection

0
between B and... 56 (66.7%)
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Clarifications

1. We say that two sets A, B the same cardinality if and only @ bijection A — B

between the two sets. -

o We aren't saying that every single function f : A — B is a bijection; instead, we're
saying that we are able to find a bijection

2. To prove that a function is a bijection, we must prove that it's both an injection and a Sl@ion!

N~——— — ——

o To prove that a function is an injection, we need to show that no two inputs map to the
same output.

o To prove that a function is a surjection, we need to show that for any ¢ € Codomain,
there is a specific b € Domain suchthat f : b — c. W

N
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Natural Numbers and Whole Numbers of wholes

The natural numbers (also known as the counting numbers), denoted by N, are the most primitive
numbers; ones that occur trivially in nature that can be used to count a (hon-zero) number of things.

N={1,2,3,4,..}

Then, the set of whole numbers, denoted by Ny, is the union of the set of counting numbers with

the number O. )/ ilso c.c.
No=10,1,2,3,4,...; = {0 UN
( =N
N —> O
z —pP 1
Last class, we showed the bijection N —Nj is given by 5 Z
v 3
fix—xz—1 S Y
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Countably Infinite

We say set .S is countably infinite if and only if there exists a bijection f : N — S.If guch a

bijection does not exist, we say .S is uncountably infinite.

It turns out that our bijection can even be from any other countably infinite set, not just N.

We can even find a bijection in the reverse direction, i.e. g : S — N, since all bijections are
invertible

One way to think of this is to give each number a waiting number in an infinitely long line! We are
essentially finding an ordering of S..

We showed that there exists a bijection from N — Ny, telling us that Ny is also countably
infinite

There is a more ge term that we use to refer to finite and countably infinite sets —we say
these sets are countable

o Onthe other hand, we say uncountably infinite sets are uncountable
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Example: Bitstrings
A bitstring is a number written in binary, i.e. a sequence of Os and 1s.

a) Consider the set of all bitstrings with length n. Is this set finite, countably infinite, or uncountably

infinite? 7&»» ove Spufqll'ﬁ v bk ‘]ﬂ " 2.9, given n= 8§

e { bvo0 cvoo .. - () e, (el 3
jCiV\TJ({

b) Now consider the set of all bitstrings of finite length. Is this set finite, countably infinite, or
uncountably infinite?
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Integers

The set of integers, denoted by Z, is the union of the whole numbers with their negatives

Z=1{..,-3,-2,-1,0,1,2,3,..}

Are the integerg’countably infinite, or incountably infinite?







Rational Numbers

The set of rational numbers, denoted by (), is the set of all possible combinations of one integer
divided by another, with the latter integer being non-zero.

Qz{grp,QEZ,q#O}

Are the rational numbers countably infinite, or uncountably infinite?
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Dense orderings ff’ g st sine

We say a set S is densely-ordered ff it satisfies tie followi roperty:

€®<c<b

In English, this condition states that between any two elements in a set, there is some other element

Va,b € S

in the set that is between the first two.

I i —
ALt 1
« 4 2

L

zv\
The set of rational numbers is densely ordered. Suppose m and 1 are two rational numbers, such

that m < n. Then, mTJF” IS a rational number that is is between the two. 4, by, a2, b, € 7
m= ﬁ‘_ n =/Oll
b, b 2 b Ry b1
a, 4 ax N
T T w
What implications does this have on the countability of (Q? e —,

11



rohonads  ARE c;mmwg vFite

N C A
sy n) = (6]
4 2% — ]"\)' - | & Mjech‘o« W"( ?\—
> ey f-
-
L O N
N imd(bﬁof\
B
‘ | N CE
‘. ‘ %
( 3 ")/’—7 //)(_-
N = U”L)%LL/ g e % ‘(/15077 [/
iViJQLhM ER) -%/ by

12



Injection from Q — N:

°;i\’\\"“
a (N
/—{L/’ .
° |
1 A
-1 [ —a
1y B .
(2 >
2} b .
\ + . ™ - Y - - -
¢
To recap: ‘
e SinceN C Q, we have |N| < |Q]. 7{ N ]._/?_1’1

e Since there is an injection Q — N, we have |Q| < |N].

mre countably infinite:

—

o Therefore, we have |Q| =
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Real Numbers

The set of real numbers, denoted by IR, is the set of all possible distances from O on a number line.

2
R = {3,7,-+63,01224, 3, .}

For the sake of completeness, we define the irrationals.

Irrational Numbers

The set of irrational numbers, denoted by R\Q is the set of real numbers that are not rational. That
is, they are real numbers that cannot be written as an integer divided by another integer.

R\Q = {m, —e, V5,...}

Are the real numbers countable?
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No.

The proof of this is beyond the scope of this course.

The argument used to prove that R is uncountably infinite is caled Cantor's Diagonalization.

S
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Transcendental Numbers

We say a number is transcendental if it is not the solution to a non-zero polynomial equation with
integer coefficients.

In other words, t is transcendental if there are no ag, a1, ..., a, such that
at" +a, t" 1+ ...+ ait+ag=0

Common examples of transcendental numbers are 7 and e. On the other hand, while \/§ IS
irrational, itis not transcendental as.itis arootto 2 — 2 = 0.

No rational number is transcendental: if 1 = % & Q we have that m is a solutionto bx — a = 0.

As a consequence, all real transcendental numbers are irrational, but transcendental numbers can
also be complex.

If a number is not transcendental, i.e. if it is the solution to a non—ze(ro polynomial with integer
L] L] L] L] qu
coefficients, we call it algebraic. M 3 ehoic U Bronsc anolen tel - yead
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Real Numbers COuntfabl -

Rational Numbers

Integers
Irrational
Whole Numbers Numbers
Natural 7\
Numbers Vmcoom(’ﬁb[ “

The complex numbers appendix of the textbook has a more complete picture. However, since the
complex numbers are a superset of the reals, we know that complex humbers are uncountably
infinite as well.



Key Takeaways

e Not all infinite sets have the same cardinality! There are "different levels" of infinite-ness

e For our purposes, we will simply classify infinite sets as either countably infinite or
uncountably infinite

o The sets N,Ny, Z, (Q are all countably infinite. IR is not countably infinite.

o If S is a set with infinitely many elements, there is no notion of | S| — we can only look at |.S|
relative to the cardinality of some other infinite set

\N\’ \@»\ :\Z)
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Attendance

tinyurl.com/freefultz
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Propositional Logic

Set theory and propositional logic are intertwined. We need to formally study propositional logic
before discussing proof techniques (which we will begin later next week).

Corresponds to 1.4 in our book. 1.5 gives a nice summary of all of the notation that we'll see in the

following section.

20
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Truth valie

——
A proposition is a statement that is has a definitive value - either true or false.

Propositions

Are the following statements propositions?

e "3 is prime" \/

o "Tisprime” ! propositian 17(76) \/

e "itis 93 degrees outside right now in Berkeley, CA" /

e "LeBron James is the greatest basketball player of all time" )<

admmﬂb\ T flawmk 5 T

<. . Wo'f" Q. T/ur ’,
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Logical Operators

A B

Logical operators allow us to form complex propositions. These form the basis of everything we'll

see in propositional logic.

1. Conjunction: A N\ B, read"A and B" v/
A@ﬁ:(xeA/\fxegg . o —
both st be frae nfersection T T T \
2. Disjunction: A \V B, read"A or B" = T

T | F
AuB-ox: xeA V xeB b el T F T
at least oe wmust ke frune
3. Negation — A, read "not A" F (= F (=
)’q 5— A 7( < A> 3 ot fable

We can use conjunctions, disjunctions and negations to create more complicated logical statements.

' g s
£(x): (s evem
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