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Announcements

e Quizgradesareout! gy
o Raw score is out of 2, but it should really be out of 25

o Q4B was graded incorrectly and was recently fixed, so your score may have changed
within the last two hours.

o Qverall, the class did very well.
o Solutions and a blank copy are linked on the website.

e Quiz 2isin aweek from Thursday!



Last Time: Types of Proofs

e Direct Proofs B
e Proof by Contradiction
e Proof by Contraposition

Proof by Cases

Proof by Induction (Thursday)

Will learn best by doing examples!



Review: Proof by Contradiction

In a proof by contradiction, to show S is true, we begin by assuming —.5, i.e. that S is false.

After a few steps, we will reach a contradiction, i.e. something that implies —.5 is false. Since our
initial assumption was that .S was false, we know this cannot be the case (since S and —.S can never
be equal), thus .S must be true, proving our statement.

e S could be a single proposition, e.g. "13 is prime", or even an implication!

e.g. x? is even = x is even (how would we negate this?)

e |ssue with proofs by contradiction: the goal isn't immediately clear. We don't know what the
contradiction is going to be when we begin.
o Could show that two things that are not equal are equal,i.e.0 = 1

o Often, we use contradictions to prove the non-existence of something



Review: Proof by Contraposition

Suppose we want to prove P = ().

Remember, P =- () is nothing but a proposition with a truth value. Our job is to show that P = ()
is true. Often we can do this directly, but sometimes it's easier to show the contrapositive
—() = —P hasatrue value.

P Q P= Q=P

True True True True
True False False False
False True True True

False False True True
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Example
Prove thatif A C B, then for any set @g BnNC.
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Proving If and Only If ¢ ”Z% but 5%’2.4
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When the statement we're proving is of the form " P if and only if ()", we essentially have to perform
two separate proofs. We need to independently prove that P = (), and () = P. (For each of

these separate proofs, we can use whatever method we want: direct, contradiction, contrapositive,
etc.)

Example
GivechthatA = a + % and B =b+ ;

isanintegerifandonlyift = y = 1.

| 1) swhtihede x=y=1
| = '—l "'L"/‘" A Z
) lf X=4y=1, g e g B - {a+ )(“l)
2) ;f A-B ez, Ao TEYT ‘ ,(M' (f/«H)
= ab &+ b |
—) S\ (e OK,L (4 Z} / .

ab +tatl +1 e Y



LTP },f ABeZ, thew x=4=|

Gi\/w'.
Qq ﬂnﬂl ’K“;
A-p= (0\ +,7£<>(“3L 1)
2@ 4—+ AW an
X 40
‘V\(\‘ 1\/‘\-/ \ Wt 3\
snce P&
} ’ \.‘/ VL S['\owad
| A
ved b $how - ¢ 2 dvectons,
Has  is 0’\[7 |7059‘1HL when :‘5{—7;[\0\_047“
7(‘(-} = | 7 held g.
— /_



Contradictions with Implications

Just because a statement is of the form "if P, then Q doesn't mean we have to resort to a direct or
contrapositive proof. We can also do a proof by contradiction!

Recall, the negationof P = Qis P N\ —(Q).

Example
Prove that if 22 is even, then x is even.
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Proof by Cases

In many instances, we may find it easier to view a statement as the combination of many sub-cases.
By proving each possible sub-case, we can prove the validity of the full statement.

When doing a proof by cases, we need to ensure that all possibilities are accounted for.

This works, because we split our proposition P into sub-propositions, e.g. P;, Ps:

(PAVE)=Q=(Pi=Q)N(FP= Q)
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We've now covered the main styles of proof techniques, save for induction. We'll now look at the
following oddities:

e \Vacuous "Proofs"

e Counterexamples

o Faulty Proofs and Logic
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Vacuous Proofs

s a true value when both P is true and () is true. But it also has a true value whenever P

If the earth is flat, then all dogs can fly.

This is an implication that holds a true value. Since P is false, () could be anything; P = () is true.
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Proof by... Counterexample?

NOT a progf technique! (more of a disproof technique)

We can't prove things to be true by using a counterexample. We can prove that things are not true,
~
ﬂ i
5

Prove or disprove: All Pythagorean triplets are of the form (3k, 4k, 5k) fork € R™.
e 82 4+ 15% = 17% but (8,15,17) # (3k, 4k, 5k) for any positive real k

e Counterexample! Disproof.

though:

Example
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Faulty Proofs and Logic

We want you to be able to read a proof and point out flaws in it.

Watch out for some common mistakes:

e Assuming the statement we are trying to prove to be true to begin with

Dividing by something which could be O
Not switching inequalities when working with negative numbers
Using an example as a proof for a statement which applies to multiple cases

Introducing a variable twice with two different values

CM{«;M; CMMFOCI“(‘(\/E W/ (ovvesse
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Example

Prove 1l = 2.

Proof: Let x = vy. Then:

%y AL

What is the flaw in logic with this proof?
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Example 2(n+! \

Prove that if n is an integer and 21 + 2 is even, then n is odd.
r\/_\_/\ V\./

1 - Af‘a\
Proof: Proceed by contraposition. Assume thiat n is oddWe will now prove that 2n + 2iseven.

Clearly, 2n must be an even number, since it is divisible by 2. Furthermore, 2 is an even number, so

21 + 2 must be even. This concludes the proof.

What is the flaw in logic with this proof?
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Example

Prove that 1 is the greatest whole number.

W)w,‘l

Proof: Let n € N be the greatest néat&ral number. Since it is the largest, its square n’

must be less

than or equal to it.

n’ <n

Equivalently,

n(n—1) <0
1

Which has two integer solutions, n = O andnn = 1. Since 1 > 0, we have that & is the greatest
hedyral number.

\J,\o\i.

What is the flaw in logic with this proof?

We &§suned Thare exists & F.,m&g—k
o[
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