Lecture 7: Foundational Proof Techniques, Cont'd

http://book.imt-decal.org, Ch. 2.0, 2.1

Introduction to Mathematical Thinking

February 19th, 2018

Suraj Rampure

Announcements

- Quiz grades are out!
 - Raw score is out of **25**, but it should really be out of 25
 - Q4B was graded incorrectly and was recently fixed, so your score may have changed within the last two hours.
 - Overall, the class did very well.
 - Solutions and a blank copy are linked on the website.
- Quiz 2 is in a week from Thursday!

Last Time: Types of Proofs

- Direct Proofs
- Proof by Contradiction
- Proof by Contraposition
- Proof by Cases
- Proof by Induction (Thursday)

Will learn best by doing examples!

Review: Proof by Contradiction

In a proof by contradiction, to show S is true, we begin by assuming $\neg S$, i.e. that S is false.

After a few steps, we will reach a contradiction, i.e. something that implies $\neg S$ is false. Since our initial assumption was that S was false, we know this cannot be the case (since S and $\neg S$ can never be equal), thus S must be true, proving our statement.

- S could be a single proposition, e.g. "13 is prime", or even an implication! e.g. x^2 is even $\Rightarrow x$ is even (how would we negate this?)
- Issue with proofs by contradiction: the goal isn't immediately clear. We don't know what the contradiction is going to be when we begin.
 - \circ Could show that two things that are not equal are equal, i.e. 0=1
- Often, we use contradictions to prove the non-existence of something

Review: Proof by Contraposition

Suppose we want to prove $P\Rightarrow Q$.

Remember, $P\Rightarrow Q$ is nothing but a proposition with a truth value. Our job is to show that $P\Rightarrow Q$ is true. Often we can do this directly, but sometimes it's easier to show the contrapositive $\neg Q\Rightarrow \neg P$ has a true value.

P	Q	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$
True	True	True	True
True	False	False	False
False	True	True	True
False	False	True	True

rational a

Prove that if a,b and c are odd integers, then there are no integers solutions to $ax^2+bx+c=0$.

regation of P=) Q is P17Q

Proof by Contradiction

Assume there exist vational solutions:

$$ax^{2}+bx+c = (Ax+B)((x+D)=0)$$

$$= A(x^{2}+(AD+BC)x+BD$$

$$a = AC$$

$$b = AD + BC$$

$$c = BD$$

1) consider
$$a = AC$$

since a is odd, A and C are also odd

2) consider
$$c = BD$$

since c is odd, B and D are also odd

(A) B

Prove that if $A\subseteq B$, then for any set C, $A\cap C\subseteq B\cap C$.

Given: $x \in A \implies x \in B$

only assuming this

Anc TEA and TEC

 $\chi \in A \cap C$ This means $\chi \in A$ and $\chi \in C$ But if $\chi \in A$, then $\chi \in B$ $\therefore \chi \in B$ and $\chi \in C$ $\therefore \chi \in B \cap C$

Proving If and Only If

alb
$$\iff$$
 $\exists c \in \mathbb{Z}$: $b=ac$
e.g. $8|24$ but $5\nmid24$

When the statement we're proving is of the form "P if and only if Q", we essentially have to perform two separate proofs. We need to independently prove that $P\Rightarrow Q$, and $Q\Rightarrow P$. (For each of these separate proofs, we can use whatever method we want: direct, contradiction, contrapositive, etc.)

Example

Given $a,b,x,y\in\mathbb{N}$ such that $A=a+rac{1}{x}$ and $B=b+rac{1}{y}$, and y|a and x|b , prove that $A\cdot B$ is an integer if and only if x = y = 1.

i) if
$$x=y=1$$
, then $A \cdot B \in \mathbb{Z}$

2) if
$$A \cdot B \in \mathbb{Z}$$
, then $x=y=1$

is an integer if and only if
$$x = y = 1$$
.

i) if $x = y = 1$, then $A \cdot B \in \mathbb{Z}$

i) substitute $x = y = 1$

A: $B = (a + \frac{1}{x})(b + \frac{1}{y})$
 $= (a+1)(b+1)$
 $= ab + a+b+1$
 $\Rightarrow since a, b \in \mathbb{Z}$, $ab+a+b+1 \in \mathbb{Z}$

2) RTP if
$$AB \in \mathbb{Z}$$
, then $x=y=1$

$$A \cdot B = \left(a + \frac{1}{x}\right) \left(b + \frac{1}{y}\right)$$

$$= \left(ab + \frac{1}{y}\right) + \left(b + \frac{1}{x}\right)$$
int, int, int, int, int, ince y a since y a

Need to show
$$\frac{1}{xy} \in \mathbb{Z}$$

this is only possible when $xy = 1$
but $xy = 1 \implies x = 1$ and $y = 1$
if $A \cdot B \in \mathbb{Z}$, then $x = y = 1$.

Given:

yla and x/b

we showed both directions,

statement holds.

Contradictions with Implications

Just because a statement is of the form "if P, then Q" doesn't mean we have to resort to a direct or contrapositive proof. We can also do a proof by contradiction!

Recall, the negation of $P\Rightarrow Q$ is $P\wedge \neg Q$.

Example

Prove that if x^2 is even, then x is even.

P

Para: x² is even 1 x is odd

Proof by Cases

In many instances, we may find it easier to view a statement as the combination of many sub-cases. By proving each possible sub-case, we can prove the validity of the full statement.

When doing a proof by cases, we need to ensure that all possibilities are accounted for.

This works, because we split our proposition P into sub-propositions, e.g. P_1, P_2 :

$$(P_1 \lor P_2) \Rightarrow Q \equiv (P_1 \Rightarrow Q) \land (P_2 \Rightarrow Q)$$

$$\bigcap_{\mathsf{WR}} \mathsf{Car} \quad \mathsf{show} \quad \mathsf{this} \quad \mathsf{fable}$$
 asing a

$$\gamma = 2k$$

$$\chi = 2K+1$$

the statement holds in Prove that the cube of any integer is either a multiple of 9, 1 more than a multiple of 9, or one less than a multiple of 9.

Question: What are the cases?

Every integer has remainder ,0, 1, or 2 when divided by 3.

i)
$$x = 3k$$

$$z) x = 3k+1$$

$$\chi = 3k + 2$$

$$\kappa \in \mathcal{X}$$

Case 1
$$x = 3k$$
, $k \in \mathbb{Z}$

$$x^3 = (3k)^3 = 27k^3$$

$$= 9(3k^3)$$

$$= (3k)^4$$

$$= 127k^3$$

$$=$$

(ase 2
$$x = 3k + 1$$
, $k \in 2$)

 $x = 3k + 1$
 $x = (3k + 1)^{3}$
 $= 27k^{3} + 27k^{2} + 9k + 1$
 $= 9(3k^{3} + 3k^{2} + k) + 1$
 $\therefore x \text{ is } 1 \text{ greater than } 6 \text{ multiple of } 9$

since we've accounted for all

cases, he've shown

Case 3
$$x = 3k+2$$
, $k \in \mathbb{Z}$
 $\chi^3 = (3k+2)^3$
 $= 27k^3 + 18k + ... + 8$
 $= 9 \square + 8 = 9 \square + 9 - 1$
 $= 9(1) + 1) - 1$

$$|\chi| = \begin{cases} \chi & \text{if } x \ge 0 \\ -\chi & \text{if } x \le 0 \end{cases}$$

4 cases to consider!

Prove that $|rac{a}{b}|=rac{|a|}{|b|}$, $orall a,b\in\mathbb{R},b
eq 0$.

i)
$$a \ge 0$$
, $b > 0$

$$\frac{a}{b} \ge 0$$
 $|a| = a$, $|b| = b$

Example

$$\left|\frac{a}{b}\right| = \frac{a}{b} = \frac{|a|}{|b|}$$

2)
$$a \ge 0$$
, $b < 0$

$$\begin{vmatrix} a & b & 0 \\ b & b \end{vmatrix} = -\frac{a}{b}$$

$$|a| = a \quad |b| = -b$$

$$\left|\frac{a}{b}\right| = -\frac{a}{b} = \frac{a}{-b} = \frac{|a|}{|b|}$$

4)
$$a \subset 0$$
, $b \subset 0$
 $|a| = -a$, $|-b| = -b$

: the statement holds in general.

We've now covered the main styles of proof techniques, save for induction. We'll now look at the following oddities:

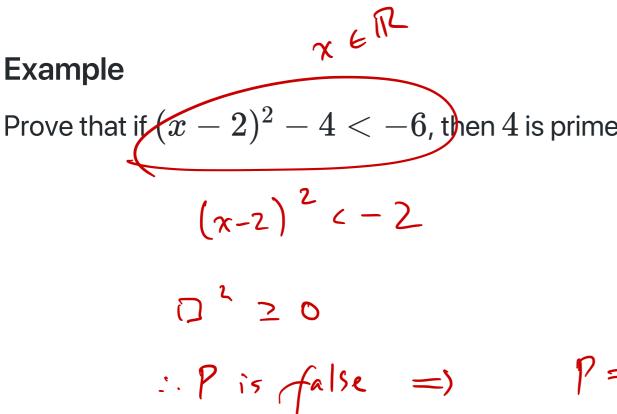
- Vacuous "Proofs"
- Counterexamples
- Faulty Proofs and Logic

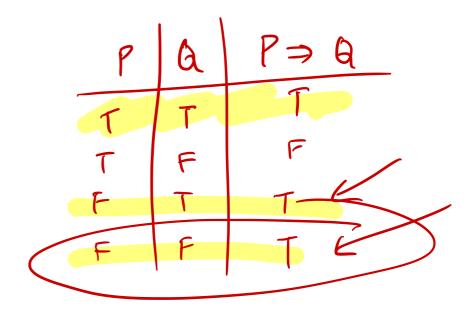
Vacuous Proofs

 $P\Rightarrow Q$ has a true value when both P is true and Q is true. But it also has a true value whenever P is false!

If the earth is flat, then all dogs can fly.

This is an implication that holds a true value. Since P is false, Q could be anything; $P\Rightarrow Q$ is true.





Proof by... Counterexample?

NOT a proof technique! (more of a disproof technique)

We can't prove things to be true by using a counterexample. We can prove that things are not true, though:

Example

Prove or disprove: All Pythagorean triplets are of the form (3k,4k,5k) for $k\in\mathbb{R}^+$.

- ullet $8^2+15^2=17^2$, but (8,15,17)
 eq (3k,4k,5k) for any positive real k
- Counterexample! Disproof.

Faulty Proofs and Logic

We want you to be able to read a proof and point out flaws in it.

Watch out for some common mistakes:

- Assuming the statement we are trying to prove to be true to begin with
- Dividing by something which could be 0
- Not switching inequalities when working with negative numbers
- Using an example as a proof for a statement which applies to multiple cases
- Introducing a variable twice with two different values
- · confusing contrapositive w/ converse

Prove 1=2.

Proof: Let x = y. Then:

$$x^2=xy$$
 $x^2-y^2=xy-y^2$
 $(x+y)(x-y)=y(x-y)$
 $x+y=y$
 $x+y=y$
 $x-y=0$
 $2y=y$

What is the flaw in logic with this proof?

Prove that if n is an integer and 2n+2 is even, then n is odd.

Proof: Proceed by contraposition. Assume that n is odd. We will now prove that 2n+2 is even.

Clearly, 2n must be an even number, since it is divisible by 2. Furthermore, 2 is an even number, so 2n+2 must be even. This concludes the proof.

What is the flaw in logic with this proof?

Prove that 1 is the greatest whole number.

whole

Proof: Let $n \in \mathbb{N}$ be the greatest materal number. Since it is the largest, its square n^2 must be less than or equal to it.

$$n^2 \le n$$

Equivalently,

$$n(n-1) \leq 0$$

Which has two integer solutions, n=0 and n=1. Since 1>0, we have that \hbar is the greatest figural number.

whole

What is the flaw in logic with this proof?

We assumed there exists a greatest whole number.

Prove there is no greatest even int.

Pf. by contradiction: Assume M is the greatest even in T

N = M +2

N & Z, N even

-> cantradiction