Lecture 8: Mathematical Induction
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Announcements

e Homework 3 due tomorrow, 11:59PM

o We'll heavily rely on sigma notation, Z?Zl, when talking about induction. If you're shaky with
sigma notation, look at the Appendix section on Sigma and Pi Notation in our book
(http://book.imt-decal.org)
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Example (for fun!)
Prove 0.999... = 1.
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Recap: Types of Proofs

Direct Proofs

Proof by Contradiction

Proof by Contraposition

Proof by Cases

Proof by Induction



Motivation

Suppose you're sitting in a massive lecture hall, and want to find out how many rows you're sitting
from the front of the room. You could sit there and count, but consider this basic principle:
e The person sitting in the first row knows their row number by default: they're in the first row!

e |f one knows the row number of the person in front of them, they add 1 to get their own row
number



Mathematical Induction

We use induction to prove properties about all natural numbers. Induction has three steps:

1. Base Case: Establish that the statement holds forn = 0 orn = 1 (or whatever makes the most

sense in the situation) W9 Mﬂﬂv] wa "“’“‘P(‘
2. Induction Hypothesis: Assume that the statement holds true for n = k;, for some arbitrary k

[3. Induction Step: Given the fact that the statement holds true for n = k, show that it holds for
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What does this remind you of from CS 61A? What are the parallels?
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- we rud Poprs base Case.

In terms of propositional logic: v last exauple = PC1)

Base Case: Show P(0) (or other base case) holds true /
Induction Hypothesis: Assume P (k) holds true for some arbitrary k € Ny
Induction Step: Show P(k) = P(k + 1), Vk.

VP (P(O) N VEk (P(k) = P(k + 1)) = Vn €Ny (P(n)))

where P () represents the proposition we are trying to prove.
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More explicitly:
P(0) = P(1)(5 P(2) = ...
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Example 0'=cosQ+ ¢ smb kel K

De Moivre's Theorem states the following:

|[R(cost + isint)|” = R"(cosnt + i sinnt)

Prove De Moivre's Theorem (for n €Ng) using induction. cosla+ b ) =cosa cosh
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Example

The Fibonaccisequence 1,1, 2, 3,5, 8,13, 21, 34, ... is defined by the recurrence relation :
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Example

Suppose that there are 2n + 1 airports where 7 isa positive integer. The distances between any
two airports are all different. For each airport, therel actly one airplane departing from it, and

heading towards the closest airport. Prove by induction that there is an airport which none of the
airplanes are heading towards.
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Example /

Prove that 8|9" — 1,forn € N.

Base Case

/
.. Lase care balds .

A%\AMC()\(\Kf\ / nE

1%\ = B¢, e
QK:gC*\

du 1o g .
u?’ﬁkﬁa, \ ?KL ___&L

Shw ’,.(. ,
be Z
7kel-I—/ _ qk‘?_)
= [Y(‘H) 6]“'
= % +9-

14



Next time, we will...

e Introduce the idea of "strong induction", where we assume more than just that P (k) holds

e Analyze various inductive proofs and point out the flaws in them

Our textbook has several examples of induction problems, many of which we didn't cover in class,
but that may be helpful for your next homework. Try and attempt each of these problems on your
own before looking at the solution.
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